
Benchmarking Machine Learning Software and
Hardware for Quantitative Economics

Victor Duarte

UIUC

Diogo Duarte

FIU

Julia Fonseca

UIUC

Alexis Montecinos

Suffolk

June 2019

Abstract

We investigate the performance of machine learning software and hardware for
quantitative economics. We show that the use of machine learning software and
hardware can significantly reduce computational time in compute-intensive tasks. Using
a sovereign default model and the Least Squares Monte Carlo option pricing algorithm
as benchmarks, we show that specialized hardware and software speeds up calculations
by up to four orders of magnitude when compared to programs written in popular
high-level programming languages, such as MATLAB, Julia, Python/Numpy, and R,
and high-performing low-level languages such as C++.



1 Introduction

In the last ten years, machine learning revolutionized many fields of research, from image

recognition (Krizhevsky et al. 2012), to machine translation (Wu et al. 2016), to intertemporal

optimization (Mnih et al. 2015). These breakthroughs were possible due to major advances

in computer hardware, software, and methods.

Importantly, advances in each of these fronts tend to spur advances in the others. For

instance, the development of new computer chips reduces the run time of experiments, which

allows researchers to explore more ideas, an essential part of developing new methods. New

methods and powerful computers make machine learning attractive to more researchers,

increasing the pool of software developers who contribute to open-source projects. Better

software leads to lower barriers to entry into machine learning, while a larger pool of potential

customers provides economic incentives for hardware development. This positive feedback

loop helped create a rich ecosystem of software and hardware that has been largely untapped

by researchers in quantitative economics.

In this paper, we argue that research in finance and economics could benefit from this

technological spillover. Specifically, we show that the adoption of machine learning software

and hardware can accelerate standard operations in computational economics by up to four

orders of magnitude, compared to popular programming languages—such as MATLAB,

Python/Numpy, Julia, C++, and R—running on ordinary computers. We use two benchmark

models, a strategic sovereign default model (Arellano 2008) and the Least Squares Monte

Carlo (LSMC) method of pricing American options (Longstaff and Schwartz 2001). The

former is solved using a standard value iteration algorithm, and therefore representative of

many dynamic programming problems studied in economics. The key elements of (Longstaff

and Schwartz 2001), simulation and regression, are also common ingredients in many tasks in

economics and are tasks machine learning frameworks are designed to excel in.

2



Our paper is closest to Aruoba and Fernández-Villaverde (2015), who compare different

programming languages commonly used in economics by benchmarking the solution of a real

business cycle model using a value iteration algorithm. The authors show that the choice of

tool can make a significant difference in both execution and development time. Specifically,

the authors show that compiled languages, such as C++ and Fortran, can run hundreds

of times faster than scripting languages, like Python or MATLAB for a typical economic

application. At the same time, the authors point out that compiled languages are more

complex and therefore harder to master, demanding more development time. We show that

machine learning software can potentially eliminate this trade-off.

This paper is also related to computational economics literature that explores modern

hardware to accelerate computation in quantitative economics. Aldrich et al. (2011) show

that the use of Graphics Processing Units (GPUs) speed up value iteration by up to 200

times, while Fernández-Villaverde and Valencia (2018) present a guide on parallelization for

both GPUs and ordinary Central Processing Units (CPUs). This paper adds to this existing

work by benchmarking machine learning software and also a new type of hardware designed

specifically for machine learning applications, called Tensor Processing Units (TPUs).

The second objective of the paper is to lay out a blueprint for future work on quantitative

economics. To the best of our knowledge, this is the first paper to provide an assessment

of machine learning software and hardware for computational economics.1 By providing

replication files in our Github repository, we hope to stimulate the adoption of these tools by

researchers in quantitative economics.2

1Note that this is not the first paper to explore the potential of machine learning algorithms for economic
applications. To name a few recent studies, Gu et al. (2018), Athey et al. (2019), Fernandez-Villaverde (2019)
and Duarte (2019) employ machine learning algorithms for either empirical or computational work. With
the exception of the latter, these works do not use specialized software (such as TensorFlow or PyTorch) or
hardware (such as GPUs or TPUs). And while Duarte (2019) uses both TensorFlow and GPUs, the study
does not benchmark these tools against traditional software and hardware.

2Code can be found at github.com/vduarte/benchmarkingML.

3



The rest of the paper is organized as follows. Section 2 describes the software and hardware,

focusing on recent advances and on how these new tools can be used to accelerate compute-

intensive tasks in quantitative economics. Section 3 discusses the first benchmarking exercise,

the sovereign default model of Arellano (2008). Section 4 details the second benchmarking

exercise, using the LSMC method of pricing American options. Section 5 concludes.

2 Software and Hardware

It is well understood that there is a trade-off between compiled programming languages,

such as Fortran and C++, and scripting languages, such as Python, Julia, R, and MATLAB

(Aruoba and Fernández-Villaverde 2015). Compiled languages have relatively fast execution

speed but higher development time due to their complexity. As computers become more

powerful, researchers tend to favor development speed.

As a consequence, most of the research in computational economics is done in either

MATLAB, Julia, R, or Python.3 Accordingly, we benchmark specialized machine learning

software and hardware against these four high-level languages. We also include C++ in our

benchmarking exercise, which is perhaps the most powerful among low-level languages and is

one of the most popular.4 We benchmark this software in a MacBook Pro laptop, and also

use specialized hardware which we describe below.5

Among the traditional programming languages that we select for our benchmarking

exercise, Julia and Python are perhaps the least well known within economics. Julia

is a modern, flexible language, designed for high performance and suitable for scientific

3See, for instance, Coleman et al. (2018) for a recent comparison of programming languages in economics.
4 C++ is ranked third in the May 2019 edition TIOBE Index of programming language popularity, behind

Java and C.
5The full specification of the laptop is Mac OS 10.12.6 Sierra, 2.6 GHz Intel Core i5, 8 GB 1600 MHz

DDR3, and 256 GB PCle-based storage. The specification for all hardware used in our benchmarking exercise
can be found in Table A.1.

4



and numerical computing. Its syntax follows MATLAB’s closely, and it promises superior

performance on a number of tasks. Python is a general-purpose programming language

that has become increasingly popular among academics and practitioners due to its syntax

simplicity and flexibility. Most numerical work using Python relies on the Numpy library,

a large collection of classes and functions for linear algebra and numerical computing.

Throughout the text, we refer to the combination of Python and the Numpy library as

Python/Numpy.

For some computational-intensive applications in economics, such as dynamic program-

ming, structural estimation, option pricing, and Bayesian inference, computing power is still

one of the most central bottlenecks. Even with the increased power of modern computers,

the need for higher performance often drives researchers in these fields away from scripting

languages and towards compiled languages.6

Interestingly, this trade-off is not confined to academia. Several tech companies, which

need to maximize software performance while minimizing development time, experience the

same challenge routinely. In the last three years, some of the largest tech companies addressed

that problem by developing and open sourcing machine learning frameworks. Google open

sourced TensorFlow in 2015, followed by Microsoft with its Cognitive Toolkit (CNTK) in

2016 and Facebook with PyTorch in 2016.

We benchmark two of these frameworks, TensorFlow and PyTorch, which have sparked

considerable interest in recent years. Figure 1 shows the number of active developers for

the top five machine learning frameworks in 2019. As of 2019, TensorFlow had nearly 2,000

active developers, followed by PyTorch with around 1,000 developers. These frameworks

feature a Python front end for fast development and experimentation and highly optimized

kernels written in C++ and CUDA for number crunching. Therefore, the scripting language

serves as the glue that binds together pieces of code written in low-level languages.

6See, for instance, Guvenen (2009), Ju and Miao (2012), and Kaplan and Violante (2014).

5



Crucially, both PyTorch and TensorFlow can completely eliminate the overhead stemming

from data transfers between the system memory and the CPU or GPU. While MATLAB and

Python/Numpy also rely on fast C/C++ kernels to execute linear algebra operations, these

languages return intermediary results to the interpreter after the execution of each operation.

The composition of many such operations slows down the program when the computation

involves large arrays as memory transfers become costly.7 PyTorch and Tensorflow, on the

other hand, create a computation graph of the entire program and execute it on the CPU or

GPU without ever transfering intermediary results from the C++ or CUDA kernels to the

interpreter.8

Another distinctive feature of these modern numerical libraries is that they make efficient

use of available hardware. Modern machine learning frameworks, for instance, automatically

offload compute-intensive parts of code to a GPU if such a unit is available. GPUs are

specialized hardware designed to excel in massively parallel linear algebra operations, originally

developed to accelerate the processing of video game graphics.

In an influential study, Raina et al. (2009) show that GPUs can be used to speed up

machine learning applications by up to two orders of magnitude. Aldrich et al. (2011) is one of

the first studies to show that the same gains can be obtained in economic applications. Aldrich

et al. (2011) also note the challenges associated with GPU programming, such as memory

management, but predict that these considerations would eventually become irrelevant for

the average user. Much like the authors predicted, a researcher today does not need to have

specialized knowledge of GPU programming, as machine learning software automatically

makes efficient use of these units. We leverage this feature of specialized software by running

the exact same TensorFlow and PyTorch code on a desktop computer with a consumer-grade

7See, for instance, Alted (2010) and Bergstra et al. (2010).
8TensorFlow executes in this so called “graph mode” by default, while PyTorch requires the use of JIT

decorators.

6



GPU.9

The adoption of modern numerical frameworks also opens up the possibility of using

specialized hardware that is not otherwise available, such as Google’s Tensor Processing

Unit (TPU). TPUs are Application-Specific Integrated Circuits (ASICs) designed to execute

specific tasks—such as multiplying large matrices—as fast as possible. Google’s TPU powers

many of Google’s compute-intensive services, such as Gmail and Google Translate. Currently,

TPUs are only available through cloud computing via Google’s Compute Engine or via Colab,

a cloud service intended for researchers.10 We benchmark Colab, which is available free of

charge, and use both its TPU and GPU capabilities.11

3 Experiment 1: Sovereign Default Model

We start by benchmarking machine learning frameworks using the stochastic general equilib-

rium with endogenous default risk of Arellano (2008). We choose this model for its popularity

and because we can solve it through value function iteration, a widely used solution method

for a large class of models.

3.1 Model Description

A benevolent government chooses a consumption plan {ct} and government asset holdings of

one-period discount bonds {Bt+1} to maximize its citizens expected discounted utility

E0

∞∑
t=0

βt
c1−γt

1− γ
,

9 The full specification for this and all hardware used can be found in Table A.1.
10 Colab can be accessed at https://colab.research.google.com/
11 See footnote 9.

7



where β ∈ (0, 1) is the time preference parameter and γ > 0 the relative risk aversion

parameter. In addition, households receive a stochastic stream of tradable good {yt}.

At each period, the government can choose to default on its obligation or to repay its

debt. If the government decides to default on its obligation, it is immediately excluded from

international financial markets and households consume output ydeft , which is lower during

financial autarky

ct = ydeft ≡

 yt if yt < ŷ

ŷ if yt ≥ ŷ
,

for some exogenous threshold ŷ. If the government decides to pay its debt, it can access

international financial markets to buy one-period bonds Bt+1 at a competitive endogenous

price q(Bt+1, yt). The resource constraint is given by

ct = yt +Bt − q(Bt+1, yt)Bt+1.

Lenders are risk-neutral and lend at the constant rate r > 0. The bond price then given

by

q(Bt+1, yt) =
1− δ(Bt+1, yt)

1 + r
,

where δ(Bt+1, yt) is the endogenous probability of default.

Denoting the government’s value function by νo(B, y), we can write this problem recursively

as

νo(B, y) = max
{c,d}

{
νc(B, y), νd(y)

}
,

8



where

νd(y) = u(ydef ) + β
[
θEνo(0, y′) + (1− θ)Eνd(y′)

]
,

νc(B, y) = max
B′
{u(y − q(B′, y)B′ +B) + βEνo(B′, y′)} .

The parameter θ represents the probability of the government regaining access to international

credit markets. Finally, the probability of default is given by

δ(B′, y) = E
[
νd(y′) > νc(B′, y′)

]

3.2 Results

Results for this benchmarking exercise can be found in Table 1. Each panel of Table 1 refers

to different hardware and each row contains the average run time in milliseconds of one

iteration of the solution algorithm for a different software/hardware combination.12 In each

column, we vary the grid size of government bond holdings. Note that we implement and run

the exact same algorithm in each programming language, so the solutions across different

platforms are identical up to machine precision.

In the first panel of Table 1, we benchmark C++, Julia, Matlab, Python/Numpy, PyTorch,

TensorFlow, and R, in a MacBook Pro laptop. Our first result is that TensorFlow and PyTorch

outperform scripting languages, and the difference in performance increases with grid size.

For the smallest grid size we consider, with 151 points, TensorFlow is 4.5 times faster than

MATLAB and more than 8 times faster than Julia. For the finest grid, with 1551 points,

TensorFlow is around 42 times faster than MATLAB and 25 times faster than Julia.

12 We average the run time across 500 iterations of the solution algorithm. The full configuration of all
hardware used can be found in Table A.1. Software versions are detailed in Table A.2.

9



Secondly, we find that TensorFlow outperforms our C++ implementation. TensorFlow

ranges from 1.5 to 2 times faster than C++, depending on grid size. This result suggests that

machine learning software may do away with the trade-off between software performance

and ease of development for typical economic applications. Note that TensorFlow runs C++

kernels on its back end, so it is not entirely surprising that it achieves similar performance.13 It

is slightly more surprising that it outperforms C++, but that is potentially attributable to our

C++ implementation being less optimized than that of TensorFlow, which was programmed

by highly skilled software engineers at Google. Our main takeaway from this result is that,

for the average researcher, machine learning frameworks offer C++ performance without the

high cost of development usually associated with low-level languages.

So far we have benchmarked programming languages on a personal laptop. But one of the

key features of machine learning software is its seamless integration with specialized hardware,

which provides striking gains in performance. In the second panel of Table 1, we show results

obtained by running the same TensorFlow and PyTorch code on a desktop computer with a

consumer-grade GPU.14 The gains in performance range from 2 orders of magnitude (e.g.

TensorFlow vs. MATLAB for a grid of 151 points) to 4 orders of magnitude (e.g. TensorFlow

vs. Python/Numpy for a grid of 1551 points). In particular, the performance of the same

software with or without the use of a GPU is as high as 3 orders of magnitude (for TensorFlow

with a grid of 1551 points). This is a sizable performance gain which comes at no additional

development cost to the researcher.

Finally, we benchmark the performance of machine learning software in Google’s Colab,

a cloud service available free of charge, and show results of this exercise in the last two

panels of Table 1. We first benchmark Colab’s GPU capabilities and find that performance is

13 TensorFlow runs C++ kernels on its back end in the absence of GPUs, such as in the case we describe.
In the presence of GPUs the back end of both TensorFlow and PyTorch is CUDA.

14 PyTorch requires one additional line of code to set the back end kernel to CUDA for use with a GPU and
TensorFlow requires two additional lines of code to initialize use with a TPU. These additional commands do
not vary with the application or algorithm and the code is otherwise identical.

10



comparable, if slightly inferior, to what we obtain on a desktop computer with a high-end

consumer-grade GPU. We then benchmark Colab’s TPU, which in this application is slower

than its GPU by an order of magnitude for coarser grids but comparable for finer grids.15

4 Experiment 2: American-Style Option Pricing

Next, we turn to the Least Squares Monte Carlo (LSMC) method of Longstaff and Schwartz

(2001) for pricing American options. We choose this as a benchmark because the two key

components of the method, simulation and regression, are common ingredients in most

compute-intensive tasks in economics and finance.

4.1 Model Description

The discrete time approximation of an American option is the so-called Bermuda option,

where the holder has the option to exercise the contract in a finite number of dates 0 < t1 <

t2 < ... < tK−1 < tK = T.

Under the assumption of no arbitrage, the put option price V0 is the solution of the

following optimal stopping problem

V0 = sup
τ∈T0

EQ [f(τ, Sτ )|F0] ,

where Sτ is the underlying asset, f(·, ·) is the discounted payoff function, the expectation

is taken under the risk-neutral measure Q, F0 represents the information set at the initial

time, and the stopping time τ belongs to the class of all {0, ..., T}-valued stopping times,

represented by T0.

15 As of now, only TensorFlow is compatible with the use of TPUs, although support for PyTorch and
Julia is under development.

11



At the exercise date ti, the continuation value qti satisfies

qti = sup
τ∈Tti

EQ [f(τ, Sτ )|Fti ] , (1)

where Fti is the information set at time ti and Tti is the class of all {ti+1, ..., T}-valued

stopping times. The continuation values are determined by the recursive equations

qti = EQ [max
{
f(ti+1, Sti+1

), qti+1

}
|Fti
]
, i ∈ {0, 1, ..., K − 1},

with terminal condition qT = 0.

LSMC uses a linear combination of orthonormal basis functions to approximate the

expectation in (1). Starting at time tK−1, the continuation value is approximated by

qtK−1
=

M∑
j=0

ajpj(StK−1
), (2)

where aj ∈ R are the regression coefficients, pj(·) are the polynomial basis, and M represents

the degree of the polynomial basis.

The coefficients are determined by solving the least squares problem of minimizing the

distance between the approximate option price in equation (2) and realized payoffs one period

ahead. To alleviate the problem of multicollinearity of the regressors, we solve the ordinary

least squares problem with ridge regression using a L2 penalty λ = 100, and repeat this

procedure until the first exercise date.

12



4.2 Results

Results for this benchmarking exercise can be found in Table 2. Each panel of Table 2 refers

to different hardware and each row shows the run time in milliseconds of the full solution

algorithm for a different software/hardware combination.16 In each column, we vary the order

of the polynomial used to approximate the continuation value. As in the previous experiment,

we implement and run the exact same algorithm in each programming language.

Our findings for this exercise are in line with those from the previous section. In the

comparison of all languages in a MacBook Pro laptop, shown in the first panel of Table 2, we

again find that TensorFlow and PyTorch outperform other software. For a basis order of 5,

TensorFlow is nearly 8 times faster than MATLAB and 17 times faster than Julia. For a

basis order of 25, the largest we report, TensorFlow is 5 times faster than MATLAB and 14

times faster than Julia.

Moreover, we again obtain considerable gains when running the same TensorFlow and

PyTorch code on a desktop computer with a consumer-grade GPU, which are shown in the

second panel of Table 2. Performance gains, in this case, are highest for a basis order of

25 and can exceed two orders of magnitude (e.g. TensorFlow vs. R). Finally, in the last

two panels of Table 2, we benchmark Colab’s GPU and TPU capabilities. Performance

gains are again comparable to what we obtain with a desktop computer with a high-end,

consumer-grade GPU, if slightly inferior.

16 As before, the full configuration of all hardware used can be found in Table A.1 and software versions
can be found in Table A.2.

13



5 Conclusion

In this paper, we investigate the performance of machine learning software and hardware for

typical applications in economics and finance. Machine learning software is designed to excel

in massively parallel tasks, such as simulation, regression, and matrix operations, which are

staples of many algorithms in quantitative economics. Moreover, this software is designed to

make efficient use of available specialized hardware, such as GPUs or TPUs.

We show that modern numerical frameworks can produce substantial performance gains

without the added complexity of compiled languages. By making our replication files publicly

available in our GitHub repository, we hope to facilitate the adoption of these tools by a wide

range of researchers.

14



References

Aldrich, Eric M, Jesús Fernández-Villaverde, A Ronald Gallant, and Juan F Rubio-Ramírez.

Tapping the supercomputer under your desk: Solving dynamic equilibrium models with

graphics processors. Journal of Economic Dynamics and Control, 35(3):386–393, 2011.

Alted, Francesc. Why modern cpus are starving and what can be done about it. Computing

in Science & Engineering, 12(2):68–71, 2010. doi: 10.1109/MCSE.2010.51. URL https:

//aip.scitation.org/doi/abs/10.1109/MCSE.2010.51.

Arellano, Cristina. Default risk and income fluctuations in emerging economies. American

Economic Review, 98(3):690–712, 2008.

Aruoba, S Borağan, and Jesús Fernández-Villaverde. A comparison of programming languages

in macroeconomics. Journal of Economic Dynamics and Control, 58:265–273, 2015.

Athey, Susan, Mohsen Bayati, Guido Imbens, and Zhaonan Qu. Ensemble Methods for

Causal Effects in Panel Data Settings. arXiv e-prints, art. arXiv:1903.10079, Mar 2019.

Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-farley, and Yoshua Bengio. Theano:

A cpu and gpu math compiler in python. In Proceedings of the 9th Python in Science

Conference, pages 3–10, 2010.

Coleman, Chase, Spencer Lyon, Lilia Maliar, and Serguei Maliar. Matlab, python, julia:

What to choose in economics? CEPR Discussion Papers 13210, C.E.P.R. Discussion Papers,

2018.

Duarte, Victor. Machine learning for continuous-time finance. Working paper, 2019.

Fernandez-Villaverde, Jesus. Financial frictions and the wealth distribution. Working paper,

2019.

15

https://aip.scitation.org/doi/abs/10.1109/MCSE.2010.51
https://aip.scitation.org/doi/abs/10.1109/MCSE.2010.51


Fernández-Villaverde, Jesús, and David Zarruk Valencia. A practical guide to parallelization

in economics. Working paper, 2018.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning.

2018.

Guvenen, Fatih. A parsimonious macroeconomic model for asset pricing. Econometrica, 77

(6):1711–1750, 2009.

Ju, Nengjiu, and Jianjun Miao. Ambiguity, learning, and asset returns. Econometrica, 80(2):

559–591, 2012.

Kaplan, Greg, and Giovanni L. Violante. A model of the consumption response to fiscal

stimulus payments. Econometrica, 82(4):1199–1239, 2014.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Pereira, F., C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages

1097–1105. Curran Associates, Inc., 2012.

Longstaff, Francis A, and Eduardo S Schwartz. Valuing american options by simulation: a

simple least-squares approach. The Review of Financial Studies, 14(1):113–147, 2001.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig

Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-

maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.

Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised learning

using graphics processors. In Proceedings of the 26th Annual International Conference on

16



Machine Learning, ICML ’09, pages 873–880, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-516-1.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva

Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff

Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff

Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation. CoRR, abs/1609.08144, 2016.

17



Figure 1: GitHub Contributors

TensorFlow PyTorch MXNET Theano Microsoft/CNTK0

500

1000

1500

2000

Nu
m

be
r o

f c
on

tri
bu

to
rs

This figure shows the number of active GitHub contributors for each framework, according to data from

GitHub.

18



Table 1: Performance Comparison for Sovereign Default Model

Hardware Software Grid Size (for Bond Holdings)

151 351 551 751 951 1151 1351 1551

Laptop

C++ 37 178 578 1010 1674 2335 3158 4161
Julia 169 725 1826 3370 5310 9188 28741 58269
Matlab 91 318 792 1546 5215 23862 60801 98609
Python/Numpy 133 667 1662 3068 11646 31228 51633 124027
PyTorch 73 371 900 1648 2672 3969 5396 7445
R 430 2237 5379 9917 15993 23726 33416 45791
TensorFlow 20 117 291 533 859 1249 1752 2306

Desktop
with GPU

PyTorch 0.32 1.40 3.63 7.37 12.02 16.14 19.37 20.67
TensorFlow 0.42 0.79 1.25 1.75 2.50 3.44 4.79 6.18

Google Colab
(GPU)

PyTorch 0.48 2.41 5.90 11.18 17.90 26.80 35.75 49.86

TensorFlow 0.74 1.28 1.98 2.95 4.07 5.70 7.97 10.15

Google Colab
(TPU)

TensorFlow 3.27 4.21 5.44 4.59 5.09 5.19 6.53 7.36

This table shows the average execution time (in milliseconds) of one iteration of the solution algorithm for the
sovereign default model described in section 3.1. We average the run time across 500 iterations of the solution
algorithm. Each row represents a combination of software and hardware and each column represents a grid
size. Details on hardware configuration and software version can be found in Tables A.1 and A.2, respectively.

19



Table 2: Performance Comparison for LSMC Method for Option Pricing

Hardware Software Basis Order

5 10 25

Laptop

C++ 920 1076 1864
Julia 1610 1792 3056
Matlab 718 843 1182
Python/Numpy 826 986 2051
PyTorch 262 333 497
R 2546 3550 4157
TensorFlow 95 121 218

Desktop
with GPU

PyTorch 22 24 35
TensorFlow 7 10 11

Google Colab
(GPU)

PyTorch 42 51 70

TensorFlow 11 14 16

Google Colab
(TPU)

TensorFlow 20 23 31

This table shows the execution time (in milliseconds) of the solution algorithm for
the LSMC method for option pricing described in section 4.1. Each row represents
a combination of software and hardware and each column represents a basis order.
Details on hardware configuration and software version can be found in Tables A.1
and A.2, respectively.

20



A Additional Tables

Table A.1: Hardware Configuration

CPU RAM Accelerator OS

Laptop Intel dual-core i5 2.3 ghz 8GB None Windows 10
Desktop Intel six-core i7 3.7ghz 16GB NVIDIA RTX 2080 GPU Ubuntu 18.04

Google Colab (GPU) Intel Xeon 2.3ghz (2 cores) 14GB NVIDIA Tesla T4 Ubuntu 18.04
Google Colab (TPU) Intel Xeon 2.3ghz (2 cores) 14GB TPU v2 Ubuntu 18.04

This table contains the configuration of all hardware utilized. While Google Colab’s processor has multiple cores, the cloud
allocates two cores per session.

21



Table A.2: Software Version

C++ Compiler Julia Matlab Python/Numpy PyTorch R TensorFlow

Visual Studio 2019 1.1.0 2019a Anaconda 3.7 1.1 Microsoft R Open 3.5.1 1.13.1

This table contains the version of all software utilized. We use C++ with the Armadillo library version 9.400.

22


	Introduction
	Software and Hardware
	Experiment 1: Sovereign Default Model
	Model Description
	Results

	Experiment 2: American-Style Option Pricing
	Model Description
	Results

	Conclusion
	Additional Tables

